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“Hot Spots” and Controls of
Organic Carbon Burial In
Global Ocean



Evolution of Global Ocean Carbon Burial

Organic carbon burial rates in various ocean sediments (unit, 10" gC year™')

Sediment type Burial rate
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Shallow-water carbonates 6
Pelagic sediments {low-productivity zones) 5
Anoxic basins (e.g. Black Sea) 1

World total

All data are from Berner (1
Table 2. Burial of

TOM Burial
Sediment Type OM* %% of % OM Burial)

Burdige (2005) Global
Biogeochem. Cycl.

5 OM is the total sediment ¢ matter (expressed here in carbon mass units, as

column one times column two,
Table 2. Global estimates of marine carbon burial as a function of sediment type.
Modified from Bermer (1982) and Hedges and Keil (19¢

Sediment Type OC Burial (x10* gC y"*)

Delaic - Contmengalshelt 0 Smith, Bianchi et al.

MNon-Deltaic - Continental Shelf & Upper Slope 68

10 (2015) Nat. Geoscl.

Shallow-water Carbonates 6
Underlying Low Productivity Zones - Pelagic 5
Anoxic Basins 1
Total Oceanic Carbon Burial 171
OC tery OC burial (Tg C y1!')  OCren burial rate  pepcent
Sediment Type Total O« Total OC OC ey (gCm=yr’) OC ey

N e et e O ey Cui, Bianchi et al (2016)
St [ +-H— | Earth. Planet. Sci. Lett.

All continental margin
sediments 11=16 %

All marine sediments 3514 %




Burial of Sedimentary Organic Carbon (OC)

Most OC (ca. 86%) Is preserved in continental margin sediments
(Berner, 1982; Hedges, 1992; Burdige, 2005, 2006).

Why?

1. Sedimentation rate, or rate of burial is an important factor

2. Redox conditions/oxygen exposure can be a factor

3. Surface Area/mineralogy/aggregates appear to be very important
4. Selective preservation based on biochemical properties

5. Geopolymerization — abiotic linkages

6. Co-precipitation and sorption to reactive Fe

The “mechanisms” of carbon preservation are still not understood.
Many relationships between %0OC, sedimentation rate, surface area,
oxygen, have been shown, but we do not have a clear mechanistic
explanation for why these relationships are observed.



The Agquatic Continuum




Passive and Active Margin Drivers of OC Burial and
Transport: Source-to-Sink

Active margin Passive margin

Erosion-deposition cycles

. . Deposition-resuspension cycles
Soil formation P P y

Fluid mud incinerators

Blair and Aller (2012) Ann. Rev. Mar. Sci.



“Hot-Spots” of Carbon Burial in the Continuum at the
Coastal Margin

Bianchi et al. (2016) Ann. Rev. Earth Plant. Sci.




Large-River Deltaic-Estuaries

Some Other Major River Deltsns

Intertidal and Sub-tidal
Habitats for OC Burial

A Tidal Channel
1D, B Salt Wedge
Figure 1. Some other major deltas of the world: (A) Nile: (B) Amazon: (C) Ganges- I C Distributary Mouth Bar

Brahmaputra; (D) Lena.
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E Delta Front
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F Mobile Mud Belt

Fig. 2. Regional geomorphogical boundaries and associated sedimentary deposits within an LDE.

Bianchi and Allison (2009) Proc. Nat. Acad. Sci.
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Different “Rules”in the Arctic Aquatic Continuum
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“Hot Spots” for Carbon Sequestration at the Land-Ocean Boundary of
the Aquatic Continuum
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Bianchi et al., 2018 (In: Wyndam et al. 2018 A Blue Carbon Primer: The State of Coastal
Wetland Carbon Science, Practice, and Policy (CRC Press)




Carbon Sequestration in Terrestrial versus Blue
Carbon Systems
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Mcleod et al. (2011) Front. Ecol



Redox Effects

Sediment-water interface
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Changes in Coastal Carbon Loading/Sequestration

a Pre-industrial continental shelf
Atmosphere pCO, = 280 ppm co,

ﬁFCOZ = 0.15% emission
Net inputs CoaStaI OCean haS

egi?ﬂg?ﬁa Open Iargely been a net
wetlands > ::> ocean . .
sink for atmospheric

DIC = 0.45¢ DIC = 0.3%

OC = 0.50% OC = 0.15% _ ]
carbon dioxide
during post-industrial

times.

b Present day continental shelf
Atmosphere pCO, = 380 ppm co,

FCO, = 0.25%¢ uptake

Net i t ' :
from rvere { All carbon fluxes including

i i O : _
estuaries anc - - padel NEP have units of Pg C yr—1.

wetlands
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Bauer, Bianchi, et al. Nature (2013)



Coastal Study Sites
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Lignin as a Chemical Biomarker of Vascular Plants

Cinammyl
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Hedges and Ertel (1982) Anal. Chem. As (mg/100 mg OC)

Bianchi and Canuel (2011) Chemical Biomarkers in Aquatic Ecosystems,
Princeton Univ. Press



Organic Carbon Dynamics In
Large River Deltas



Deltaic and Fluid/Mobile Muds: Agents of Rapid
Transport and OC Decay

Kivar mouth
bar sand

McKee, Bianchi, et al. (2004) Cont. Shelf Res.
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Transport and Decay of Lignin

Lignin decreases across-shelf due in part to decomposition as
evidenced by higher Ad/Al ratios, some loss may be due to
transformation into other substances (e.g., carboxylic-rich alicyclic
molecules [CRAM], personal comm. P. Hatcher).
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Sampere, Bianchi et al. (2008) Cont. Shelf Res.



Phy5|cal Drivers of Hydrodynamic Sorting in the Yangtze
3 Il (Changjiang) River Delta Region
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“Burn-Down” of OC in Mobile-Muds in Large-River Deltas

Oligotrophic deep ocean
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Dashed line of <0.4 represents values commonly found in oligotrophic open ocean sediments (e.g., highly degraded OC)

Collective data from: Aller (1998), Mar. Chem.; Aller and Blair (2004); Aller and Blair (2006)
GCA; Aller and Blair (2006) Cont. Shelf Res.

Yao, Bianchi et al. (2014) Cont. Shelf Res.



ARCTIC OCEAN

The Colville River

i iy hia — . IS the largest river
G B in North America
| e, that exclusively
- | drains high-Arctic
il ISR P o continuous-
ail AL permafrost tundra

160°W

Deltaic POC sources from a variety of areas, including the Colville
River, the Mackenzie River, direct coastal erosion (high in peat), aquatic
(marine and freshwater, pelagic and benthic) algal production and
yedoma.

Yedoma is an organic-rich (about 2% carbon by mass) Pleistocene-age
permafrost with ice content of 50-90% by volume. Also, rich in “old”
fatty acids and low in lignin-phenols (Vonk et al., 2010; Feng et al.,
2013). Schreiner, Bianchi, et al. (2013) J. Geophys. Res. Biogeo.



OC Permafrost Transport
to Coast
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Zhang, Bianchi et al. (2017) Geophys. Res. Lett.



Permafrost/Yedoma-Derived POC Transport to the Coast

Yedoma in the Arctic

Zhang, Bianchi et al. (2017) Geophys. Res. Lett.




Old before your time...

So, as the rules continue to change In
the Anthropocene, we can add yet
another twist in this ever-changing
epoch where a gastrotrich that lives
for 3 days can be thousands of years
old when it dies.

Guillemette, Bianchi, et al. (2017) Limnol. Oceanogr.



A “KiInk” In the Aquatic
Continuum



Changes In the Hinterland

In recent years , there has been an
astonishing increase In the retention of
water by rivers, estimated to be 600 to
700%, which has tripled the time is takes
for a water molecule to be transported
from land to sea.

Vorosmarty et al . (2009) Bull. At. Sci.



The Damn Dams

Existing Dams in
the World
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Grill et al. (2015) Env. Res. Lett.



Reduction in Missouri River Particulates from
Damming

. circa 1800 circa 1980

Wis '.f'.'q”l‘pl B ”f_nf'njp;rr'
River y N, River

Meade and Mooney (2010) Hydrol Proc.



The Loss of Coastal Deltas Shameless Advertising

IN THE RED T

Most large- and medium-sized deltas cannot grow fast enough to keep up with sea-level rise in

the next century. Damming reduces sediment load further and pushes more deltas into the red. D E L | A S
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Slow the Flow and Phytoplankton will Grow

Upper Missisippi River

High

phytoplankton ,
piomass from
packwater
reservolrs, :

navigation locks
of tributaries are —
exported to N s
mainstem of river |
during high-flow @&
periods

Duan and Bianchi (2006)
J. Geophys. Res.




Priming in the Aquatic Continuum
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et al. (2015) Geophys. Res. Lett.; Ward, Bianchi et al. (2017) J. Geophys. Res.




Priming at the River Confluence
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Ward, Bianchi et al. (2016) J. Geophys. Res.



Priming of Plant Leachates to COz2 at River Confluence

Macrophyte leaf Macrophyte stem
—— Obidos Almeirim
Obidos + algae Xingu
Curuai South Macapa
— Tapajés North Macapa

o
s

Oak wood

3"°CO, (%)

Hours Incubated

10 0

Relative to Obidos,the sum degradation rate of all four leachates was 3.3 and 2.6 times
faster in the algae-rich Tapajés and Xingu Rivers, respectively.

Ward, Bianchi, et al. (2016) J. Geophys. Res.




Possible “Hot Spots” for Priming in the Aquatic Continuum

& Reservoirs River Confluences
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Organic Carbon Dynamics In
Fjords



Organic Carbon Burial in Fjords and Ocean Sediments
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It was estimated that fjords
store ca. 11% of annual
marine carbon burial
globally.

Smith, Bianchi et al. (2015)
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Figure 1| Organic carbon concentration and accumulation data were compiled from 573 globally distributed fjord sediment samples and 124 cores
(locations shown on map insert). Bars represent the area-normalized average organic carbon accumulation rate (OC AR) of each fjord region. Shown

above each bar is the average OC content of surface sediments (%0Cg. ) in fjord basins.
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OC Flux along Southeast Alaska

Using end-member mixing
models, we determined that
glaciated fjords have
significantly higher burial
rates of petrogenic OChpetro
(1113 g OC m-2 yr-1), than
non-glaciated fjords in SE
Alaska - which are effective
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Carbon Storage in Scotland
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Carbon Sequestration In
Wetlands on an Embryonic Delta
and Coastal U.S Wetlands



This delta formed as a result of the
construction of the Wax Lake outlet in 1941.
The outlet was built to provide flood relief for
the lower Atchafalaya River.

Shields, Bianchi et al. (2015) Geophys. Res. Lett



These study sites, which became
subaerial at different times, evolved
In vegetation type, OC source, and
biogeochemical pathways

Henry and Twilley (2014) Ecosystems



Role of Reactive Iron in OC preservation
QAGU

Geophysical Research Letters

P N

RESEARCH LETTER

10.1002/2015GL067388

Enhanced terrestrial carbon preservation promoted
by reactive iron in deltaic sediments

Key Points: i Michael R. Shields', Thomas S. Bianchi', Yves Gélinas?, Mead A. Allison**, and Robert R. Twilley®
« Fifteen percent of the OC in the Wax

~15.0% of the OC was bound to FeR, and the dominant
binding mechanisms varied from adsorption in the
youngest subaerial region with the .

Shields, Bianchi et al., (2016) Geophys. Res. Lett.



ST s Preferential Sorption

Fractional Change Following Fe Removal

T of Select Compounds

Lignin phenols and
aromatic acids are
preferentially sorbed to
FeR (OC:Fe<1) at the
Young site but are not
preferentially bound
during co-precipitation
at the Intermediate and
Old sites.

Shields, Bianchi et al. (2015) Geophys.
Res. Lett




Carbon Stock and Elevation
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Global Comparison of Carbon Sequestration Rates
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Ecogeomorpho|ogy Sampling Sites and Delta Thickness
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Ecogeomphology Model

y=-045+1.7-x, r*=0.82
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Shields, Bianchi et al. 2018 Limnol. Oceanogr. (provisionally accepted)




Elevation

Modeled PC1 Scores
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The scores along PC1 could be modeled with a multiple regression model with elevation and NDVI as the
predictive variables (p <0.05, r2 = 0.80) in the following equation:

PC1 score= -0.53(elevation)+ -0.57(NDV1)+0.39

Where, elevation is the site elevation in the DEM model, and NDVI is the mean NDVI for each site from
June 2014 to July 2015.
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